Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

CND du béton : focus sur des recherches en cours en France

Odile ABRAHAM PRECEND, 15 décembre 2018

Civil infrastructures are the basis of socio-economic wealth for modern societies

Civil infrastructures are the basis of socio-economic wealth for modern societies

French research laboratories involved in concrete NDT

French research laboratories involved in concrete NDT

General frame

Research is focused on reinforced concrete with the aim to recover quantitative informations on the material properties

Outline

Context

- Summary of the methodology/philosophy (recently finished projects)

• Some ongoing research work

- PIA ENDE Project
- Increase NDT methods TRL (Technology Readiness Level)
- Numerical and physical modeling
- Gradient
- Embedded sensors
- Monitoring
- Conclusions

Outline

Context

- Summary of the methodology/philosophy (recently finished projects)

Some ongoing research work

PIA ENDE Project Increase NDT methods TRL (Technology Readiness Level) Numerical and physical modeling Gradient Embedded sensors Monitoring

Conclusions

NDT can be an alternative way for the assessment of concrete properties → non intrusive and repeatable with reasonable cost

Usual assessment of concrete properties \rightarrow destructive testing on cores

Significant variability of concrete properties \rightarrow the use of probabilistic models requires the assessment of this variability (cores \uparrow)

Most of the structures are very large \rightarrow coring is prohibitive/impossible

But... Concrete properties have conjugated effects on NDTs \rightarrow How to separate these effects?

French built heritage:

- 100000 important bridges
- 55 nuclear plants
- 350 electric dams
- Many buildings
- ©JP Balayssac

Expected properties:

- E-modulus
- Porosity
- Moisture
- Chloride content
- Carbonation
- Thermal damage
- Stress

Several NDT methods are sensitive to these properties but the relationships between them are not direct

Both mean values and variability are necessary to assess

Methodology

surface

surface

surface

acoustics

surface

acoustics

Low TRL

Laboratory benchmarks are designed for controlling concrete properties

Involved properties: moisture, porosity, E-modulus, carbonation, chlorides, thermal damage, stress

All the NDT measurements are performed at the same time

Measurement processing and extraction of **observables (features)** (velocity, attenuation, resistivity, etc)

Variance of NDT observables is quantified at different scales

- Repeatability: V1
- In a same homogeneous sample: V2
- In a same batch: V3
- Between different concretes: V4

Variance of NDT observables is quantified at different scales

- Repeatability: V1
- In a same homogeneous sample: V2
- In a same batch: V3
- Between different concretes: V4
- Strong incentive to increase the NDT methods Technology Readiness Level (TRL)

But... Concrete properties have conjugated effects on NDTs → How to separate these effects?

But... Concrete properties have conjugated effects on NDTs → How to separate these effects?

But... Concrete properties have conjugated effects on NDTs → How to separate these effects?

Linear regression models between NDT observables (Obs) and two concrete properties $(cp_1 and cp_2)$

$$Obs = A. cp_1 + B. cp_2 + C$$

But... Concrete properties have conjugated effects on NDTs → How to separate these effects?

But... Concrete properties have conjugated effects on NDTs → How to separate these effects?

→ Which methods? → How to combine them?
→ With which confidence?

But... Concrete properties have conjugated effects on NDTs → How to separate these effects?

→ Which methods? → How to combine them?
 → With which confidence?
 → How to transfert on site this methodology ?

Distributions provided by each measurement

Distributions provided by each measurement

• The methodology has been extended to on site NDT

The methodology has been extended to on site NDT

• The methodology has been extended to on site NDT

- The methodology has been extended to on site NDT
 - Pre-auscultation with NDTs to discriminate extreme zones
 - Data fusion for a first estimation
 - Extraction of cores from the structure

\rightarrow calibration procedure of the fusion process by using DT results

Data fusion: exemple

Before correction

Degree of saturation (%) Compressive strength (MPa)

After correction

Degree of saturation (%) Compressive strength (MPa)

Marly in the North of France

Mean Possibility = 0.12

Non-realistic results

Mean Possibility = 0.85 More realistic results Methods:

US Velocity - Capacity

Impact Echo - Radar

French state of the art

Non-destructive Testing and Evaluation of Civil Engineering Structures

Edited by Jean-Paul Balayssac and Vincent Garnier

•

http://www.iste.co.uk/book.php?id=1270

© ISTE Press Ltd 2018

Content:

- · Introduction
- · Ultrasonic methods
- · Electromagnetic methods
- · Electrical methods
- · Electrochemical methods
- Quality, uncertainties and variabilities
- Construction of conversion models of observables into indicators
- · Assessment of concrete by a combination of NDT
- Applications in situ
- Methodological guide

JP. Balayssac

V. Garnier

Towards a new industrial sector

Creation mid 2016 of a "civil engineering" working group within the French Confederation of Non Destructive Testing (COFREND)

- Communication and federate
- Forecast and define needs (tools, methods, people, qualifications, ...)
- Qualify the techniques (guidelines, norms, application domains, practise, ...)
- Qualify the people (who, how many, benchmark, evaluation, teaching, ...)

The idea of creating a new sector (in civil engineering) has been accepted by the COFREND mid 2018

Context

summary of the methodology/philosophy (recently finished projects)

• Some ongoing research work

- PIA ENDE Project

Increase NDT methods TRL (Technology Readiness Level) Numerical and physical modeling Gradient Embedded sensors Monitoring

Conclusions

Project PIA ANR ENDE (2015 → 2018)

- Nuclear containment plants = ultimate barrier in the event of an accident
 - Resist internal overpressure
 - Prevent leakage
- Aging of concrete
 - Safety requirement
 - Life extension

- Normal condition (pre-stressing 10-15 MPa)
- Accident (pipe rupture in primary circuit): 5 bars and 180°C in 20 seconds
- Several issues regarding the link between NDE observables and
 - Durability indicators (elastic modulus, porosity, water content)
 - Tightness
 - Cracks (responsible for the leak)
 - Stress
 - Thermally damaged concrete

Project PIA ANR ENDE: on site experiment

• 2 steps process

- Experiments in the lab on slabs (50 cm x 25 cm x 12 cm)
 → calibration laws on the concrete mix of the on site concrete
 - Transfor to a real size structure (was a set a)
- Transfer to a real size structure (VeRCoRs mock-up)

VeRCoRs mock-up

- 30 m height
- 16 m diameter
- 0.3m thick wall
- 5000 t of concrete
- 700 sensors
- 2 km of fiber optic

VeRCoRs mock-up

*1 Bar = 0.1 MPa = 14.5 psi

VeRCoRs mock-up

*1 Bar = 0.1 MPa = 14.5 psi

Outline

Context

- summary of the methodology/philosophy (recently finished projects)
- Some ongoing research work

- PIA ENDE Project

- Increase NDT methods TRL (Technology Readiness Level)
- Numerical and physical modeling
- Gradient
- Embedded sensors
- Monitoring

Conclusions

IFSTTAR

Cerema

ISTerre

Odile.abraham@ifsttar.fr Xavier.derobert@ifsttar.fr Sergio.lopes@ifsttar.fr Geraldine.villain@ifsttar Vincent.le-cam@ifsttar.fr

Gradients

surface waves electromagnetic waves resistivity coda wave (N)CWI

↑ TRL

Embedded sensors

Monitoring

Increase the methods TRL

Surface waves

- Increase the measurements speed (no couplant)

Laser vibrometer (2006): -Surface waves -Emitter with contact -Automatic moving of the laser

Multi-sensors probe (2015): -Very light, easy to handle -Very quick -No couplant

Ungoing (2018): -Development of a portable electronic -Reduce the cost -WIFI, internet (monitoring)

Gradient in cover concrete

Surface waves

Modelisation
 numerical & experimental

Spectral element method (SEM2D)

Gradient in cover concrete

Surface waves

Modelisation

numerical & experimental

numerical averaging on disorder

test/validation of homogenization hypothesis

new forward modeling embedded in inverse problem for matrix gradient

requested for a precision of 1 (point,%) on porosity (heterogeneity not negligible)

Coda waves

Multiple reflexions

Coda waves

Coda: Reproducible Sensitive

Observables:

- velocity variation $\theta = \Delta v / v$
- remnant decorrelation Kd

6

Nonlinear Coda waves interferometry:

Closed crack

Pre-stressed concrete

Embedded sensors - resistivity

Water and chloride profiles (including monitoring) \rightarrow calibration + 1D inversion

Embedded sensors - resistivity

Embedded sensors – electromagnetic HF

Antenna: not sensitive to concrete state (no frequency shift)

Passive stub: sensitive to chloride ingress (sacrificial stub)

Low cost

Emission from outside, reflexion from the sensor (antenna + stub)

Embedded sensor = (antenna + passive stub)

Embedded sensors – electromagnetic HF

Antenna: not sensitive to concrete state (no frequency shift)

Passive stub: sensitive to chloride ingress (sacrificial stub) (length $\lambda/n_{n=4,8,16}$)

Low cost

Emission from outside, reflexion from the sensor (antenna + stub)

Embedded sensor = (antenna + passive stub) Antenna 3 to 5 cm below the surface

An many many more from all the other laboratories!

Quantitative evaluation of concrete properties

- Driving force to increase new NDT methods TRL
- Requires combination/fusion of NDT observables
- Raise the issue of investigation depth, gradients, ...
- Requires calibrations (cores, baseline, T0, ...)
- Damage ↔ Cracks (micro, macro)
 - Non linear acoustics
 - Diffuse waves
- Increasing involvement of NDT researchers in monitoring
 - Embedded sensors (em, resitivity, us ↔ optic fiber, ...)
 - Scanners, robots, ...
 - Time lapse inversion

- Modeling
 - Numerical modeling
 - Physical modeling
- Physics
- Imagery
 - Inverse problem
 - FWI

Quantitative evaluation of concrete properties

- Driving force to increase new NDT methods TRL
- Requires combination/fusion of NDT observables
- Raise the issue of investigation depth, gradients, ...
- Requires calibrations (cores, baseline, T0, ...)
- Damage ↔ Cracks (micro, macro)
 - Non linear acoustics
 - Diffuse waves
- Increasing involvement of NDT researchers in monitoring
 - Embedded sensors (em, resitivity, us ↔ optic fiber, ...)
 - Scanners, robots, ...
 - Time lapse inversion

- Modeling
 - Numerical modeling
 - Physical modeling
- Physics
- Imagery
 - Inverse problem
 - FWI

Quantitative evaluation of concrete properties

- Driving force to increase new NDT methods TRL
- Requires combination/fusion of NDT observables
- Raise the issue of investigation depth, gradients, ...
- Requires calibrations (cores, baseline, T0, ...)
- Damage ↔ Cracks (micro, macro)
 - Non linear acoustics
 - Diffuse waves
- Increasing involvement of NDT researchers in monitoring
 - Embedded sensors (em, resitivity, us ↔ optic fiber, ...)
 - Scanners, robots, ...
 - Time lapse inversion

- Modeling
 - Numerical modeling
 - Physical modeling
- Physics
- Imagery
 - Inverse problem
 - FWI

Quantitative evaluation of concrete properties

- Driving force to increase new NDT methods TRL
- Requires combination/fusion of NDT observables
- Raise the issue of investigation depth, gradients, ...
- Requires calibrations (cores, baseline, T0, ...)
- Damage ↔ Cracks (micro, macro)
 - Non linear acoustics
 - Diffuse waves
- Increasing involvement of NDT researchers in monitoring
 - Embedded sensors (em, resitivity, us ↔ optic fiber, ...)
 - Scanners, robots, ...
 - Time lapse inversion

Modeling

- Numerical modeling
- Physical modeling
- Physics
- Imagery
 - Inverse problem
 - FWI

Thank you for your attention

