

CESMAN / END2A

• Multi-techniques et qualifiés

- 16 personnes END et analyse d'avaries
- Certifications COFREND:
 - UT2, RT2, PT2, MT2, ET2, AT2, VTI2, TOFD2
 - UT3, RT3, ET3, MT3, AT3, TOFD3, VTI3
- Habilitations et certifications pour interventions en chaufferies

Missions:

- Développer l'emploi des techniques non destructives pour le contrôle des matériaux
- Assurer des prestations de contrôle dans le cadre de l'inspection en service des chaufferies nucléaires embarquées ainsi que la gestion des automates de contrôle associés
- Assurer la réalisation des diagnostics d'avaries de structures et de matériels navals

Les CND robotisés à DCNS

• Domaine et stade d'application :

- Nucléaire
- Neuvage et suivi en service

• Intervenant:

CESMAN

• Méthodes:

- UT principalement
- ET

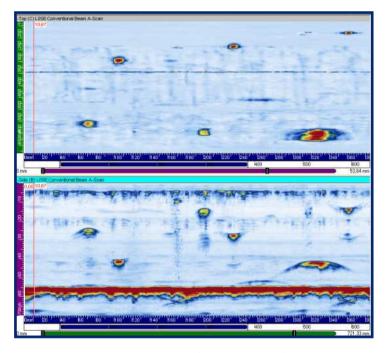
• Avantages :

- Reproductibilité
- Rapidité
- Accessibilité

Contrôle par US et CF automatique des goujons de cuve de sous-marins

Contrôle Automatique

Contrôle US+CF automatique des goujons de cuve de sous-marins

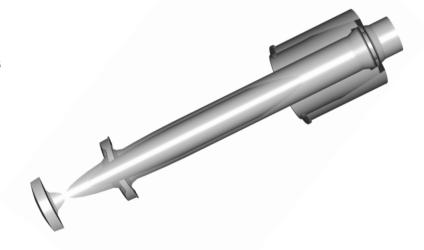

- Machine d'inspection développée en 1990.
- Inspection des parties lisses de goujons (fût) en US et CF et des congés de raccordement et des filetages en CF.
- US
 - 6 voies en US (L0, L0SE, T45+, T45-, T60+, T60-)
 - Couplage à l'eau
 - Etalonnage sur génératrices Ø2mm sur maquette représentative
 - Temps d'inspection / goujon = 20min

Contrôle US+CF automatique des goujons de cuve de sous-marins

MANETCO (Machine d'inspection)

Imagerie US obtenue sur le goujon étalon

Contrôle par ultrason de la soudure de reconstitution de la traversée cloison vapeur de SNLE


Contrôle Automatique

Examens des soudures TCV SNLE

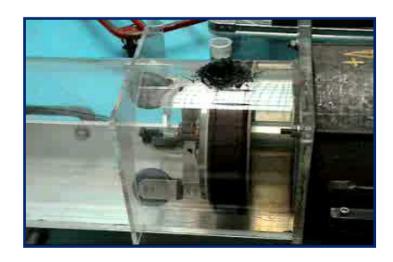
- Contrôle de suivi en service de 2ème barrière
- Éléments à contrôler.
 - soudure bout à bout
 - diamètre externe collecteur de l'ordre de 300mm
 - soudure située au minimum à 2m de l'extrémité du collecteur
 - défauts de forme en face interne
 - aucun démontage possible

• Données d'entrée

- Cohérence avec les contrôles de fabrications
- Limitation du temps d'intervention
- Amélioration de la reproductibilité


Examens des soudures TCV SNLE

- Choix d'un examen automatique en immersion
- Moyens:
 - 2 sondes phased-array linéaires 32 elts- 5MHz
 - T40° à T70° par pas de 5° dans les deux sens longitudi nalement au collecteur
 - 3 lois TOFD / L60°/ foc à 40%, 70% et 95%
 - 3 capteurs mono-éléments (Krautkramer) réalisent les tirs OL 0°et OT45° dans le sens transversal à la soudure.

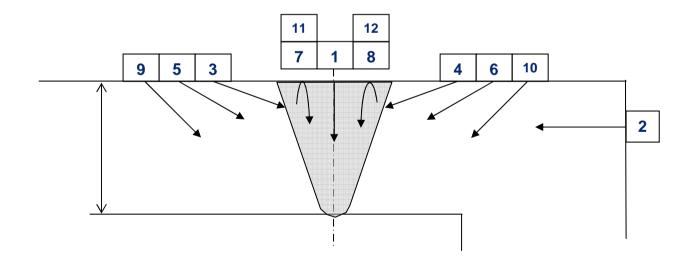


Vue des sondes / capteurs

Examens des soudures TCV SNLE

Mécanique de contrôle

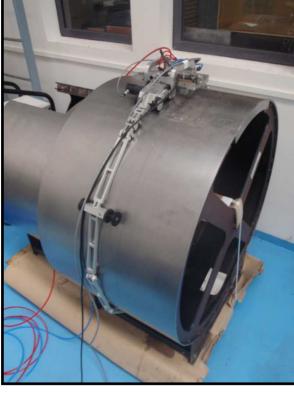
Phase d'étalonnage en immersion


Contrôle ultrason de la soudure de reconstitution de la traversée cloison vapeur du Barracuda

Contrôle Semi-Automatique

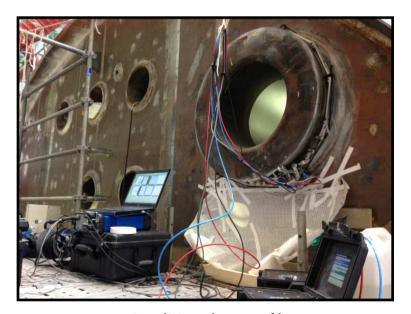
• Caractéristiques du Contrôle

- 12 incidences de tir depuis la face externe
 - T45,T55,T60,T70 : recherche défauts longitudinaux dans les 2 sens
 - L0 (dessus et coté) : recherche de défauts longitudinaux
 - T45,T60 : recherche de défauts transverses dans les 2 sens
 - TOFD
- seuil de notation : -12dB d'une génératrice Ø 2mm

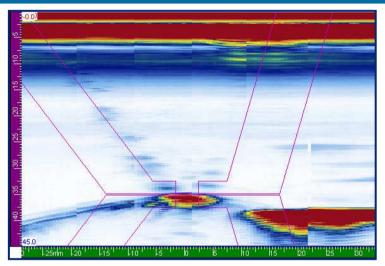

Examens des soudures TCV Barracuda

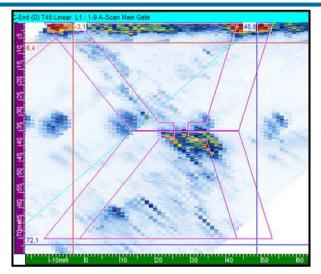
• Examen semi-automatique

- Rotation motorisée et encodée
- Couplage à l'eau (admission et aspiration)
- 7 configurations différentes

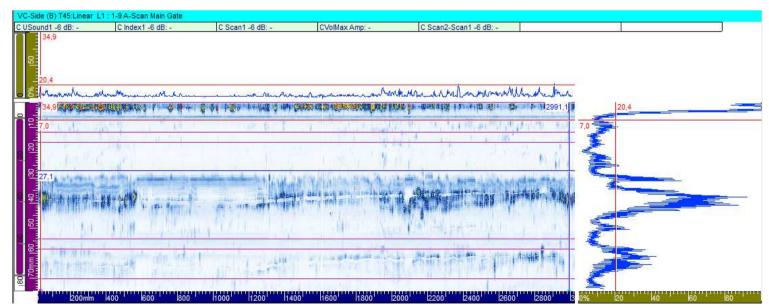

Chariot porte sonde

Phase d'étalonnage




Contrôle sur BARR1

Condition de contrôle BARR2

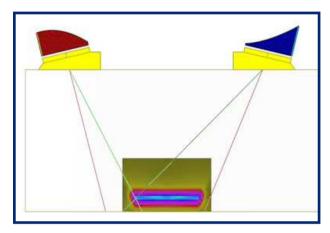

Examens des soudures TCV Barracuda

Carto B-Scan en L0° (dessus)

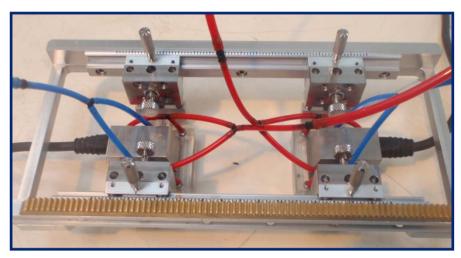
Carto B-Scan en T45

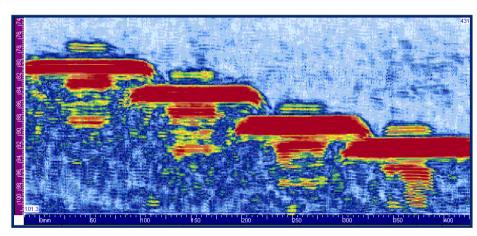
© DCNS June 2015 – all rights reserved / todos los derechos reservados / tous droits réservés – Crédits

Examen ultrasonore des soudures circulaires du Pressuriseur Barracuda


Contrôle Semi-Automatique

Examen ultrasonore des soudures circulaires du Pressuriseur Barracuda

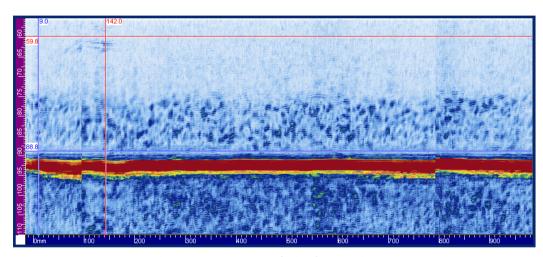

- Examen TOFD-PA du pied de joint FE
- Matière :
 - Inox Austénitique
- Soudure FE
- Balayage TOFD pendulaire à 3 profondeurs de focalisation différentes
- Déplacement motorisé et encodé
- Couplage à l'eau (admission et aspiration)


Examen ultrasonore des soudures circulaires du Pressuriseur Barracuda

Champ résultant du balayage pendulaire

Chariot porte sonde (32élts – 5MHz)

Imagerie B-Scan fusionnée sur 4 entailles étagées dans le métal de base


Examen ultrasonore des soudures circulaires du Pressuriseur Barracuda

Automate de contrôle monté sur le pressuriseur

Vue sur capacité

Imagerie de type D-Scan réalisée sur le pressuriseur

Examen courants de Foucault de tubes de générateurs de vapeur - SNA et K15

Contrôle Automatique

OCNS June 2015 – all rights reserved / todos los derechos reservados / tous droits réservés – Crédits photos : D

Examen courants de Foucault de tubes de générateur de vapeur SNA et K15

Automate SPIROU

- Mécanique adaptable pour les GV SNA (type Rubis) et K15
- Mouvement mécanique Rho-Theta
- Positionnement d'un tube guide en face de chacun des tubes à contrôler

Examen courants de Foucault de tubes de générateur de vapeur SNA et K15

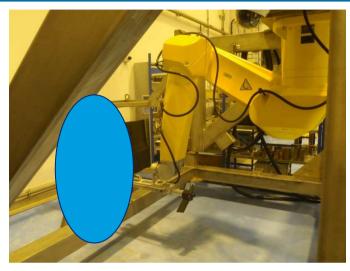
• Automate utilisé en milieu irradiant et contaminant

Baie de commande (pilotage automate)

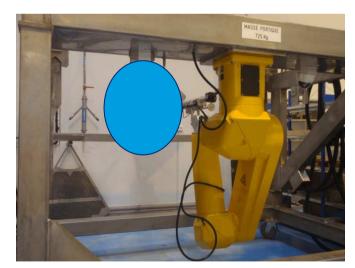
Matériels courants de Foucault

Examen courants de Foucault de tubes de générateurs de vapeur – SNA BARRACUDA et K15

Contrôle Automatique


Examen courants de Foucault de tubes de générateur de vapeur SNA BARRACUDA et K15

Automate APISCO


- Mécanique adaptable pour les GV SNA (type BARRACUDA) et K15
- Mouvement mécanique 6 axes Robot STAUBLI
- Positionnement d'un tube guide en face de chacun des tubes à contrôler

Examen courants de Foucault de tubes de générateur de vapeur SNA BARRACUDA et K15

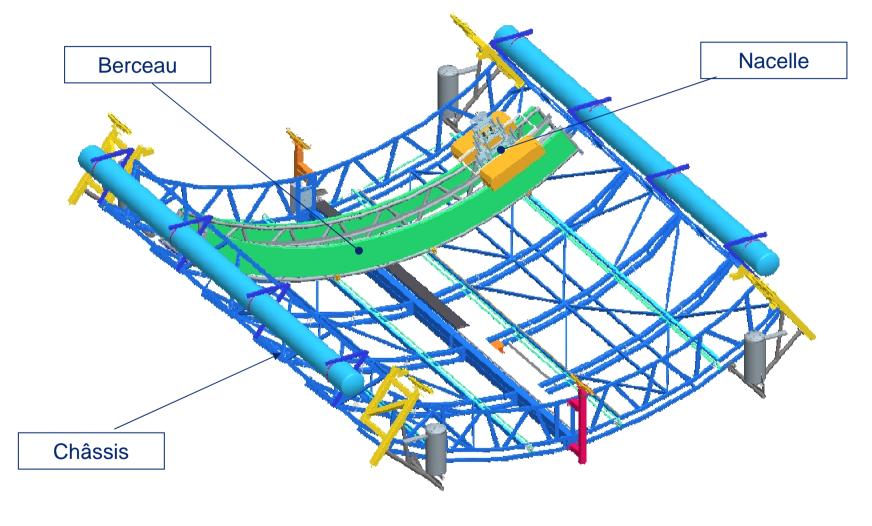
Automate : Configuration K15

Automate: Configuration BARRACUDA

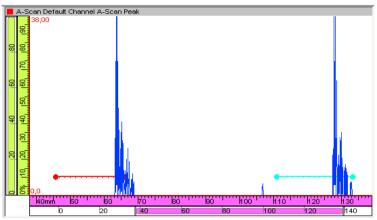
Baie de commande (pilotage automate)

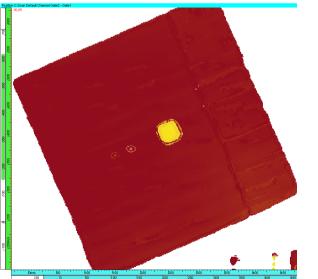
Recherche de corrosion sur coque de SM SWIMSCAN

Contröle Automatique

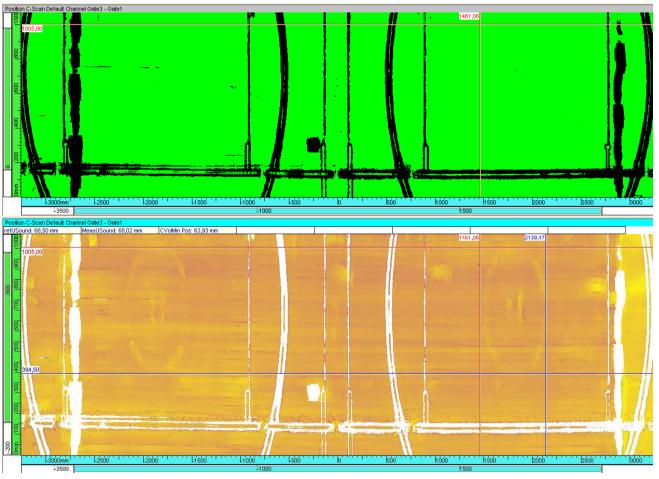

- Contexte : suivi en service des sous-marins
- Découverte de corrosions en paroi interne de coque
- Identifier et anticiper les travaux correctifs de coque
- Réduire la co-activité sur les chantiers
- Difficultés HSCT : travail au bassin, travail au plafond
- Améliorer la traçabilité des contrôles
- Surface importante >100 m²
- Exigences de détection fortes : contrôle à 100%, détection d'un TFP 5 mm

- Transducteur multi-éléments de grande dimension (IMASONIC)
 - 128 éléments / pitch 1.5mm / 5Mhz / BP >70% / pulse <500ns (-20dB)
 - Longueur de câble 30m
 - Rallonge de 30m (fourniture et adaptation du blindage par SONAXIS)
 - Largeur balayée : 178.5mm au pas de 1.5mm
- Utilisation d'une chaîne ultrasonore rapide (Dynaray) pour remontée des Ascan
- Système mécanique spécifique : porteur sous-marin (Clemessy)





- donnée de base: Ascan
- Extraction des temps de vol « Porte 1 » et « Porte 2 »: (P1;P2)
- Extraction position du signal Ascan : (x;y)
- Construction de cartographies Cscans de l'épaisseur P2-P1 = f(x;y)
 - 450 000 pts/m² au pas de 1,5x1,5mm



Swimscan:

Présentation de cartographies réalisées

(zone de 6M X 1100mm)

sea the future®