
« JT CND pour les assemblages collés-soudés » Jeudi 4 Fevrier 2016 – Polytech' Nantes / Précend

Applications:

Mesures Imagerie 2D, 3D Spectroscopie Inspection de défauts Caractérisation

Secteurs:

Assistance à la R&D Contrôle qualité Contrôle non destructif Monitoring de procédés Suivi d'exploitation

Nouvelle technologie de contrôle non destructif pour les matériaux techniques diélectriques

Les assemblages collés-soudés

Turning Science into Solutions

présentation

origine et activité

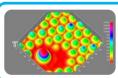
•Création : à Montpellier, en 2013

•Collaboration: spin-off du

•Activité :

Collaboration R&D

 Réaliser des prototypes personnalisés (composants et/ou systèmes) dans le domaine électromagnétique Térahertz.


Produits

• Concevoir et fabriquer une gamme de capteurs, sources, et composants optiques dans le domaine électromagnétique Térahertz.

Systèmes

•Concevoir et développer des systèmes de mesure, d'imagerie et de spectroscopie dans le domaine Térahertz.

Services

 Réaliser des prestations d'analyse Térahertz (radioscopie, tomographie et spectroscopie) et des études de faisabilité de systèmes sur la base d'échantillons.

Contact:

Thierry ANTONINI

Directeur des projets et services

Tel: 09.72.44.13.81 Mob: 06.40.21.33.56

thierry.antonini@t-waves-technologies.com

www..t-waves-technologies.com

présentation

Nos offres

À destination des laboratoires de recherche/expertise

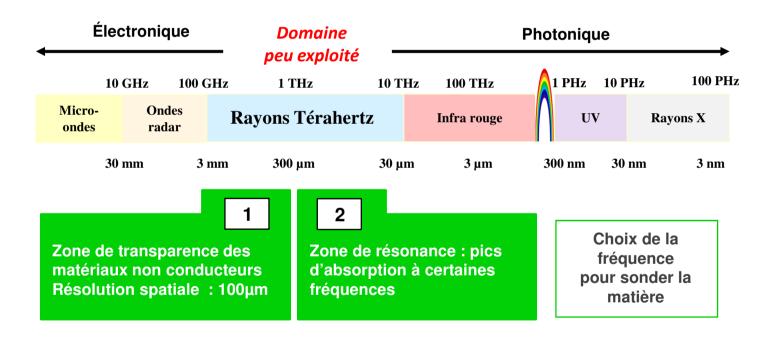
permettant d'analyser les propriétés internes des matériaux et/ou le procédé de fabrication à partir d'une information en cœur

Equipements de laboratoire

À destination des chaînes de production

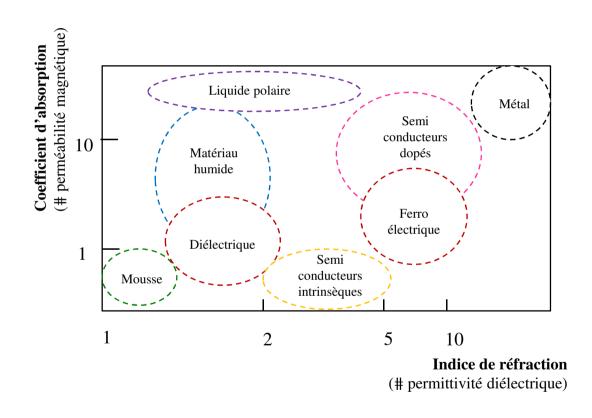
permettant de contrôler en continu les défauts internes d'un matériau/pièce et/ou de guider le procédé de fabrication à partir d'une information en cœur

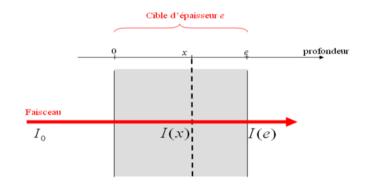
Equipements de production


À destination des sites d'exploitation

permettant de contrôler les défauts ou propriétés internes d'un matériau/pièce en exploitation

Equipements d'exploitation


Domaine d'ondes électromagnétiques unique



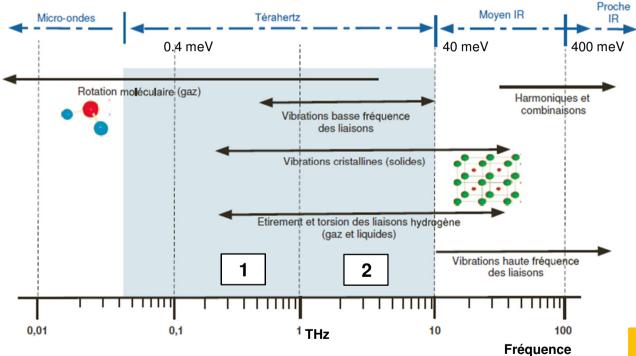
Situés entre les ondes radar et les infrarouges, **les rayons T,** peu exploités en raison de barrières technologiques et économiques, présentent des aptitudes intéressantes de **pénétration et de discrimination de la matière** par un moyen **non nocif** pour l'opérateur et **non invasif** pour la matière analysée.

Aptitudes applicatives < 1 THz

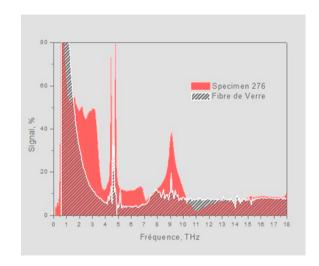
Pénétration et forte sensibilité aux hétérogénéités de la matière :

Loi d'atténuation : I(x)

$$I(x) = I_0 e^{-\sigma n x}$$


n le nombre d'atomes par unité de volume σ caractéristique du matériau (ϵ,μ,λ)

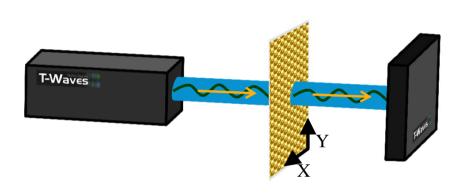
Détecte les hétérogénéités de la matière

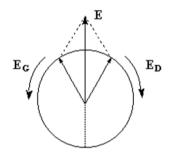

porosités, délaminations, rupture de fibres, inclusions, contaminations ...

Aptitudes applicatives >1 THz

Sensibilité à la nature des arrangements moléculaires :

Exemples d'analyse spectrométrique Térahertz




Caractérise la structure de la matière

cristallinité, type d'arrangement moléculaire, composition de la matière

Aptitudes applicatives: activité optique

Sensibilité à l'orientation spatiale des arrangements moléculaires :

EG

Polarisation incidente

Polarisation transmise

Loi du pouvoir rotatoire :

$$\alpha = \pi \, l \, \frac{(n_G - n_D)}{\hat{\lambda}}$$

 α : angle de rotation du plan de polarisation

l : épaisseur de substance active traversée

 λ : longueur d'onde de la lumière

nG, nD: indices du matériau

Caractérise la structure de la matière

orientation des fibres, arrangements spatiaux des molécules, bi-réfringence, stress...

Analyse Comparative

Projet de référence : matériaux / secteur aéronautique

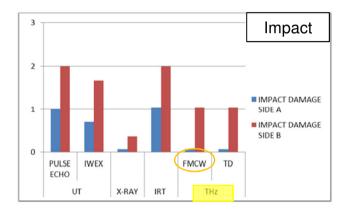
Source : Projet FP7

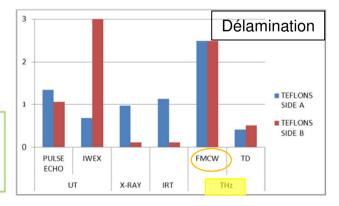
2012-14

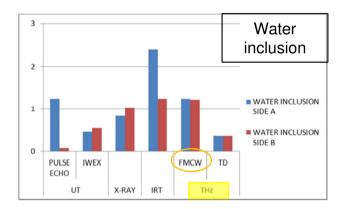
Analyse comparative entre différentes méthodes de E&CND pour matériaux composites, stratifiés et panneaux sandwich du secteur aéronautique

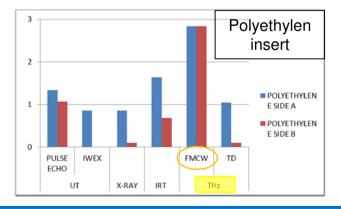
Méthodes CND:

UT : Ultrasons X-Ray : Rayons X IRT : InfraRouge Thermographie THz : Térahertz

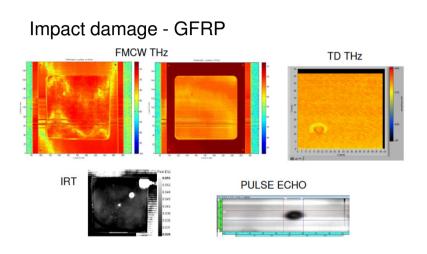

- FMCW:

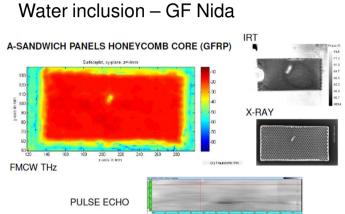

Continuous Wave
- TD: Time Domain

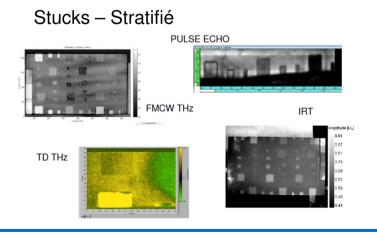

Echantillons: 76 Technologies: 6 Tests: 1742

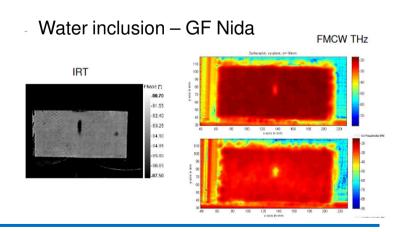

Levels of detection:

- 0 → Not detected
- 1 -> Sings, bad detection
- 2 → Presence detected but not defined shape
- 3 →Good detection of shape and position


Analyse Comparative


Source: Projet FP7 2012-14

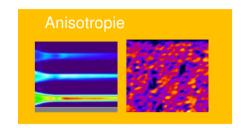



http://cordis.europa.eu/result/rcn/143757_en.html

Projet de référence : images obtenues

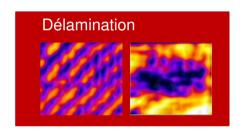
Analyse Comparative Projet de référence : résultats vs sensibilité

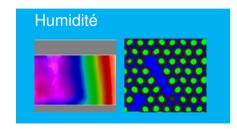
Source : Projet FP7 2012-14

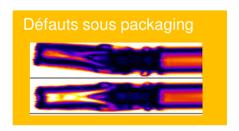


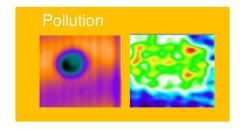

	FMCW THz	IWEX	IRT	RX	TD THz	UT
IMPACT IN CFRP	0,40	0,80	0,80	0,60	0,80	1,00
IMPACT IN GFRP	0,75	1,00	1,00	0,00	0,75	1,00
WATER IN A-SAND FOAM	0,02	0,02	1,00	0,02	1,00	1,00
WATER IN A-SAND HONEYCOMB	1,00	0,67	1,00	1,00	0,33	1,00
WATER IN C-SAND FOAM	0,02	0,02	1,00	0,02	1,00	0,02
WATER IN C-SAND HONEYCOMB	1,00	0,02	1,00	1,00	1,00	0,67
TEFLON IN SOLID	1,00	1,00	1,00	0,00	0,67	1,00
TEFLON IN A-SAND FOAM	1,00	0,75	0,92	0,42	0,58	0,75
TEFLON IN A-SAND HONEYCOMB	0,92	0,25	1,00	0,42	0,75	1,00
TEFLON IN C-SAND FOAM	1,00	0,00	0,00	0,25	0,02	0,02
TEFLON IN C-SAND HONEYCOMB	0,92	0,00	0,00	0,33	0,02	1,00
STUCKS IN SOLID	1,00	1,00	1,00	0,67	1,00	1,00
STUCKS IN A-SAND FOAM	1,00	0,78	1,00	0,00	1,00	1,00
STUCKS IN A-SAND HONEYCOMB	1,00	0,78	1,00	0,56	1,00	1,00
STUCKS IN C-SAND FOAM	1,00	0,02	0,02	0,02	0,02	0,02
STUCKS IN C-SAND HONEYCOMB	1,00	0,02	0,02	0,02	0,02	1,00
PAPERS IN SOLID	1,00	1,00	1,00	0,14	0,86	1,00
PAPERS IN A-SAND FOAM	1,00	0,62	1,00	0,19	0,67	0,71
PAPERS IN A-SAND HONEYCOMB	1,00	0,29	1,00	0,43	0,81	1,00
PAPERS IN C-SAND FOAM	0,95	0,02	0,02	0,14	0,02	0,02
PAPERS IN C-SAND HONEYCOMB	1,00	0,02	0,02	0,19	0,02	1,00

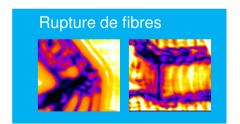
Inverse Wave Field Extrapolation (IWEX)

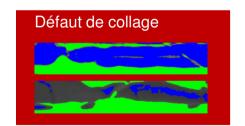

Notre retour d'expérience


Différents cas pratiques d'analyse de matériaux à partir d'ondes Terahertz avec une haute sensibilité de détection

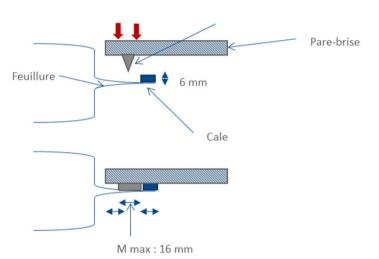


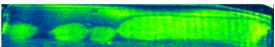


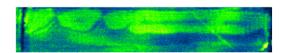




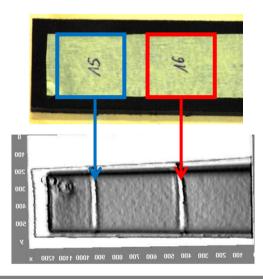


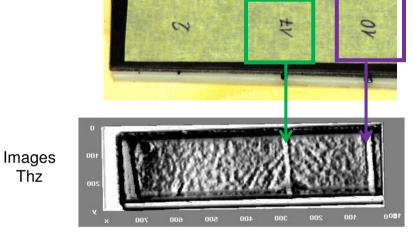



Notre retour d'expérience

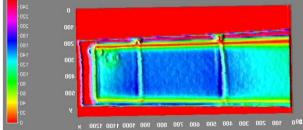

Contrôle de collage verre feuilletté – métal (pare-brises)

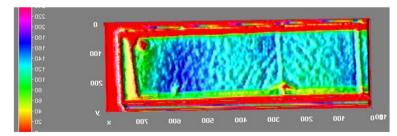
	Défauts ciblés			
1	Interruption du cordon			
2	Largeur du cordon inférieure à 6 mm			
	% de largeur de cordon inf. 6 mm			
3	Présence d'interstice dans un double cordon			
4	Hauteur métal-verre supérieur à 6 mm			
5	Défaut de position de cale			
6	Présence de brisure/fissure dans ou sur le verre			
7	Présence de tubing colle-verre			

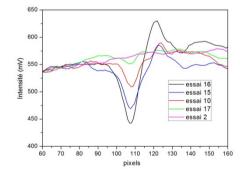

Enjeu: qualifier l'adhérence du collage


Perspectives:

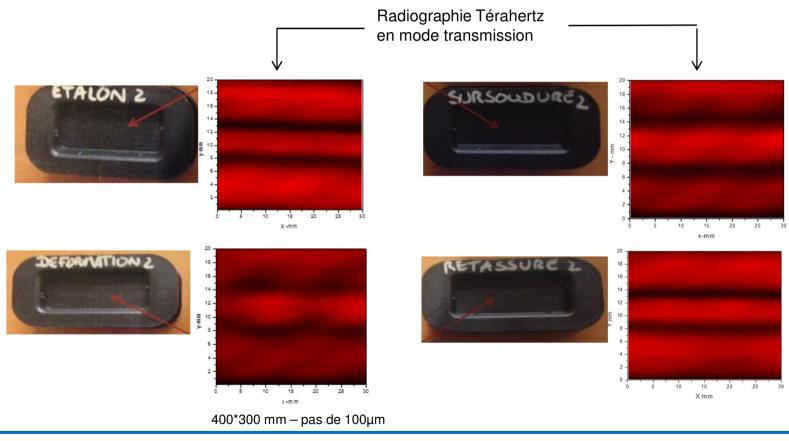
En plus des critères dimensionnelles et de forme du cordon, nous travaillons sur d'autres critères de qualification.


Notre retour d'expérience


· Contrôle non destructif de soudures plastiques (polyamide) superposées



Réf	puissance laser (W)		
2	60W	Collage	
17	150W	Soudage -	
10	220W	Soudage optimal	
15	300W	Soudage +	
16	450W	Brulure	



Critère de qualification de l'adhérence

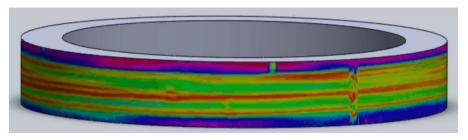
Notre retour d'expérience

Contrôle non destructif de soudures plastiques (bord à bord)

Notre retour d'expérience

Contrôle non destructif de soudures plastiques bord à bord (PE chargé en carbone)

Canalisation avec soudure au milieu

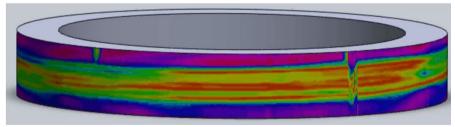


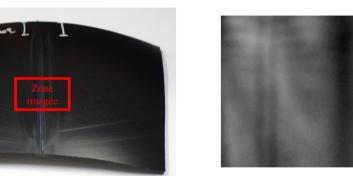
101-101

Dimensions:

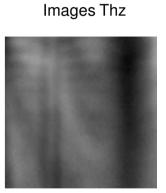
- diamètre 300 mm
- épaisseur : 30 mm

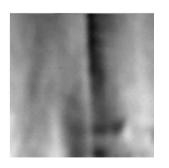
Image 3D Thz - Tube sans défauts

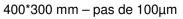


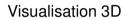

Image 3D Thz - Tube avec défauts

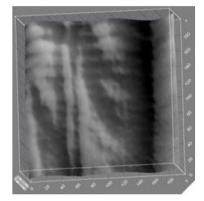
Notre retour d'expérience

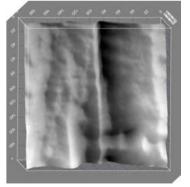

Contrôle non destructif de soudures plastiques (bord à bord)











Turning Science into Solutions

Notre retour d'expérience

Contrôle non destructif de soudures plastiques (bord à bord)

Tomographie		Terahertz	Flexion 3pts	
Zone 1	Soudure conforme	Soudure non conforme	Soudure conforme	
Zone 5	Soudure conforme	Soudure conforme	Soudure conforme	
Zone 6	Soudure non conforme	Soudure non conforme	Soudure non conforme	

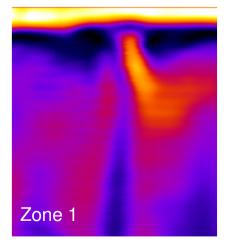



image colorisée 40*30mm

Essais de flexion révélant une élasticité différente

Analyse destructive de la soudure Analyse chimique révélant une mauvaise transformation de la matière

Conclusion

Qualifier, de manière non destructive, un collage ou un soudage reste un problème complexe:

- Le signal doit traverser deux épaisseurs de matière (transmission ou réflexion); l'information pertinente sera « diluée » dans le signal résultant mesuré
- Nécessité d'une haute sensibilité de mesure pour être suffisamment discriminant (faibles hétérogénéités) et d'une résolution spatiale sub-millimétrique
- Existence de phénomènes d'interférences de signaux (matériaux multi-couches)

Critères de qualification:

- La simple mesure de largeur du cordon de manière continue (surface de collage/collage) et la détection de décollement (lame d'air entre la colle/le soudage et le substrat) sont des premiers critères mais non suffisants
- La cohésion de la colle ou de la matière chauffée dans le procédé de soudage est aussi à prendre en compte

Pistes de travaux R&D:

- Etablir de nouveaux critères complémentaires de qualification
- Développer des méthodes sélectives pour filtrer les signaux en fonction de leur provenance spatiale

Vos problématiques ?

Cadre Livrable • Etude de faisabilité de détection, de Gratuit Mini rapport caractérisation « in Lab » • Etude de quantification, classification, corrélation Payant, Rapport Définition de référentiel CIR détaillé • Evaluation de performance Prototype ou • Spécification de systèmes Payant, système • Réalisation de prototypes CIR 3 finalisé

Investissement progressif en fonction de étapes de validation de faisabilité

Merci pour votre attention

Contact:

Thierry ANTONINI

Directeur des projets et services

Tel: 09.72.44.13.81 Mob: 06.40.21.33.56

thierry.antonini@t-waves-technologies.com

www..t-waves-technologies.com

Turning Science into Solutions