

FORACAM: A VERY PRECISE IMAGING METHOD FOR THERMAL METAL PROPERTIES CHARACTERIZATION AND FLAW DETECTION

EDEVIS GMBH STUTTGART GERMANY

EDEVIS PRODUCTS

OTvis Optical excited Lockin-Thermography

Software DisplayIMG 6 Image processing and excitation controller / real-time

Infrared camera Cooled FPA and Micro-bolometer

EDEVIS **APPLICATIONS**

State of the art: indentation (Rockwell, Vickers, ...)

EDEVIS APPLICATIONS

Measurement of carbonized depth

State of the art: metallography

Time-consumingDestructive test

sampling

embedding, milling, polishing, etching

microscopy

EDEVIS APPLICATIONS

Detection of grinding burn

State of the art: metallography

Time-consumingDestructive test

sampling

embedding, milling, polishing, etching

microscopy

TASK: INCREASE COST-EFFICIENCY

Avoid sample preparation: save time to notice weak hardening process much earlier

Non-destructive test: test object can still be used

Inline measurements: 100% inspection instead of samples, avoid rejection of whole batches

EDEVIS SOLUTION: FORATHERM PHOTOTHERMAL RADIOMETRY

Determination / detection of

- layer thicknesses
- case hardness depths
- nitriding depths
- hardness profiles
- porosity contents
- grinding burn
- hidden corrosion

EDEVIS FORATHERM: EXAMPLES

Non-contact determination of hardness profile

(after calibration with reference body)

Non-contact determination of Invar layer thickness on silicon substrate

EDEVIS FORATHERM: EXAMPLES WITH SCANNING

Welding seam

annealed / not annleaded

Grinding burn

FORATHERM PHOTOTHERMAL RADIOMETRY

Advantages

- Non-contact
- Non-destructive
- Inline-testing is possible
- Faster than materialographic analysis

Drawbacks

 Detectorsize 1 Pixel: Imaging requires time consuming scanning of sample or sensor head EDEVIS 1 PIXEL IS ENOUGH?

Why not using an infrared camera?

- Metals have a high thermal diffusivity Very high frame rates needed
- Layers like grinding burn are very thin:

Extremely high frame rates needed

 Signals levels are very small: Perfect temporal synchronization needed

- FLIR X8500sc, 180Hz
- Subwindowing
- FLIR X6900sc, 1003Hz
- Subwindowing
- Subsampling
- edevis signal generator ESG
- edevis softwareDisplayIMG

EDEVIS FORACAM SETUP

Collinear setup of IR camera and excitation laser with dicroitic

Advantages:

- Measurement spot position independent from working distance
- No geometrical constraints between camera & lens and laser excitation

EDEVIS FORACAM

edevis[®] >>>

Case hardened specimen, tested at different modulation frequencies

10 mm spot size: phase signal 1D heat flow -> lower phase contrast 3 mm spot size: phase signal influenced by 3D heat flow -> higher phase contrast due to lateral heat flux effects

- \Rightarrow Spot size should be optimized
- \Rightarrow For imaging, array of laser spots can be used

EDEVIS

FORACAM CASE-HARDENING CHARACTERIZATION

Case hardening depths of 16MnCr5 samples between 0.3 and 2.0 mm

Strong signal change -> CHD can be determined quantitatively (requires calibration)

FORACAM VS FORATHERM

EDEVIS

ForaCAM is even more sensitive!

EDEVIS

FORACAM GRINDING BURN DETECTION

Collinear setup of IR camera and excitation laser with dicroitic

Frame rate 900 Hz Subwindow 160 x 160 pixel IFOV 125 μm Measurement field 20 x 20 mm² Laser power 200 W

EDEVIS FORACAM GRINDING BURN DETECTION

Foracam Specimen 1 (measurement duration: 30s per image)

Hz

Hz

Hz

Foratherm Specimen 1 (scanned, measurement duration ca. 60min per

 H_7

EDEVIS FORACAM GRINDING BURN DETECTION

Hz

Foracam Specimen 2 (measurement duration: 30s per image)

Foratherm Specimen 2 (scanned, measurement duration ca. 20min per

 H_7

Ηz

EDEVIS FORACAM SYSTEM COMPONENTS

Sensor head with dicroit and IR camera: Foracam

Synchronization: ESG

edexis >>>

Software: DisplayImg

Laser: LTvis 250 NT

Optional: LTvis cabinet

SUMMARY

- After a calibration, metallography can often be replaced
- For one spot measurements Foratherm is suited perfectly
- Imaging photothermal radiometry is now possible with highspeed IR cameras and edevis hard- and software
- Both methods reduce costs and increase reliability
- Lab systems and industrial test stands availably

LOCKIN-THEMOGRAPHY FOR INVESTIGATION OF ELECTRONIC COMPONENTS

WHY LOCK-IN?

- Lock-In Thermography is well known and widely used in active thermography. Typical applications are non-destructive material testing and material characterization
- This powerful technique can help to see smallest temperature differences in electronic components with increased contrast and improved spatial resolution avoiding thermal undesired dissipation effects
- The technique can be combined with current FLIR cameras such as FLIR A655sc, FLIR A6750sc, or T1030sc x

SYSTEM CONFIGURATION

edevis">>>

FLIR R&D Camera

Edevis signal generator and power switch

~

Standard Core i7 computer

1114 017-2111-E

Standard power supply

TEMPERATURE IMAGE

TEMPERATURE VS. LOCK-IN

Temperature image. Overall temperature distribution is visible.

500 550 600 Amplitude (°C) 250 0,018 -0,017 20 -0,015 100 -0,014 -0,013 150 -0,011 -0,010 200 -0,009 -0,007 250 -0,006 300 -0,005 -0,003 350 -0,002 -0,001 400 -0,000 -0.002 450 -0,003 -0,004 000

Lock-In Amplitude at 0,5 Hz. Areas of local dissipation are highlighted selectively.

600

Amplitude (°C)

0,018

-0,017

-0,015

-0,014

-0,013

-0,011

-0,010

-0,009

-0,007

-0,006

-0,005

-0,003

-0,002

-0,001

0,000

-0.002

-0,003

-0,004

TEMPERATURE VS. LOCK-IN

Temperature increase 4s after start of heating

Lock-In Amplitude at 0,5 Hz. Measured difference: 6mK Profile

CONCLUSIONS

- Lockin technique can significantly increase system sensitivity
- Spatial resolution is increased as well due to reduction of thermal diffusion length
- Emissivity effects are suppressed
- Compatible to many existing cameras