

Aerospace Structure Health Monitoring using Wireless Sensors Network

Daniela DRAGOMIRESCU LAAS-CNRS, INSA Toulouse

Toulouse – Aerospace City

LAAS CNRS

- Objectives and specifications for greener and safer aircrafts
- Structure Health Monitoring System Requirements

Proposed solutions

- Robust Communication Architecture
- MAC layer and clock synchronization
- Ultra Wide Band Impulse Radio Transmission
- 60GHz Nanometric CMOS circuits
- Flexible substrate integration

Long term objectives for aeronautic systems

Eco-efficiency

AAS

INRS

- Greener systems
- Lowest carbon emissions
- Less weight
- Higher performance
- Cost efficiency
- Passenger comfort
- Safer aircrafts
- Time to market

Global system challenge \rightarrow Global system solution

Structure Health Monitoring

Structural Health Monitoring stepwise approach

SHM reduces maintenance efforts, increases aircraft availability and can also reduce weight in future

1			Generation 2	Generation 3 •fully integrated system (TR: 2018)	 smart material (TR: 2025) Benefit: weight saving aircraft level
	Generation 0 •structure testing application (TR: 2003) •Benefit:	Generation 1 •off-board equipment (TR: 2008) •Benefit: -maintenance	 on-board equipment (TR: 2013) Benefit: weight saving component level maintenance 	Benefit: -weight saving aircraft level -maintenance -availability	-maintenance -availability
	-structure analysis & testing	-maintenance			

Copyright H.Rosner – "Smart structures contribution to Airbus aircraft eco-efficiency", IWSHM , Stanford 2009

AAS

NRS

ATOM-N 2010

Generation 4

Hard landing problem

- Goals: Reduce aircraft schedule interrupts by:
 - Reducing number of false reporting hard landings
 - Aiding the maintenance process
- Current process
 - Pilot initiate inspection
 - Large number of false reports
- Process with structure health monitoring
 - Pilot initiate inspection

- Flight parameters and structure health monitoring sensor information will be used to predict load information in critical structure areas
- Recommended maintenance action
- Aid maintenance process

Structure health monitoring benefits

- Reduce maintenance effort
- Increase aircraft availability
- Component history record
- Predictive diagnosis
- Wired : weight problem and time deployment problem
- Green systems : wireless

Far future

♦ In the far future – smart materials, composite materials → self –healing !

Vascular system for healing resin in sandwich structures

Self-healing ability in visionary aerospace composites is able to reduce the inspection efforts and provide rapid repair

New requirements:

AAS

- Very high number of sensor communicating nodes, different kind of sensors
 - High number of nodes in some small areas → high interferences → 60GHz communications enabled by nano-metric CMOS technology
- Ultra-low power nodes \rightarrow autonomy needed up to several years
- Measurements synchronization
- Safety and security
- Small size → high integration
- Problems to use COTS:
- Medium numbers of nodes
- Low and medium data rate
- Not real-time systems
- Without clock synchronization
- Not enough autonomy
- Not enough integrated

Rethinking the hardware-software system
Hardware reconfigurable solution
Energy efficiency (energy/bit)

Outline

- Objectives and specifications for greener and safer aircrafts
- Structure Health Monitoring System Requirements
- Proposed solutions
 - Robust Communication Architecture
 - MAC layer and clock synchronization
 - Ultra Wide Band Impulse Radio Transmission
 - 60GHz Nanometric CMOS circuits
 - Flexible substrate integration

Proposed network architecture

- Flexible substrate architecture for the nodes
 - Low power transceiver integrated on flexible substrate together with the sensor and the antenna
- 3D integration with smart antenna for the routers in SHM applications

ANR NanoInnov – NanoComm Project

Radio link characterization on the aircraft wings

Channel Model : Close to ground propagation !

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

AAS Radio link propagation simulation inside the future composite aircraft

- Work in collaboration with Airbus
- Electromagnetic simulations

-Take into account the windows, chairs, the passengers

WSN simulateur structure

Rigorous modelling of IR-UWB PHY using BER/SNR

AAS

NRS

LAAS-CNRS et al. Performance Evaluation Of Impulse Radio Ultra Wide Band Wireless Sensor Networks, Proc of IEEE MILCOM 2009, Octobre 1 609

Example : Aircraft SHM simulation

Outline

- Objectives and specifications for greener and safer aircraft
- Structure Health Monitoring System Requirements
- Proposed solutions
 - Robust Communication Architecture
 - MAC layer and clock synchronization
 - Ultra Wide Band Impulse Radio Transmission
 - 60GHz Nanometric CMOS circuits

MAC layer and clock synchronization

Support high data rate

AAS

NRS

- Support real-time constraint (deterministi MAC)
- Include new service : precise clock synchronization
- FPGA prototype developed
- Energy efficient ASIC prototype developed including :
 - TDMA MAC layer
 - UWB-IR transceiver (emitter and receiver
 - Fast DAC/ADC → power consumption to optimized further
 - Energy/bit: 100 pJ/bit
 - Clock synchronization precision < 1 ns</p>
 - ★ State of art: MIT (prof. Chandrakasan) → '
 - IEEE PTP wired protocol- 50 ns

UWB-Impulse Radio - Promising Technique for Energy Efficient WSN

Using Ultra Wide Band-Impulse Radio (UWB-IR) PAM PPM OOK Amplitude (Volts) vmplitude (Volts) Amplitude (Volts) 0.5 0.5 0.5 0 0 0 -0.5-0.5-0.5-1 -1 -1 n n n -1 -1 Time (ns) Time (ns) Time (ns) PSM BiPhase or BPAM

- ***** Low power transmission : very short pulse
- ***** High number of communicating nodes in a small area
- ***** Fine temporary resolution \rightarrow Localization
- Design approach : Mostly Digital Toward low power and low complexity transceiver able to be powered by energy harvesting

RF front-end @ 60GHz

CMOS 65 nm ST Microelectronics technology

Emitter

AAS

- Power consumption: 53 mW
- Conversion gain > 5dB
- Bandwidth: 10 GHz

- Receiver
 - Power consumption : 43 mW
 - Conversion gain : 30dB
 - Bandwidth :5 GHz
- Complete system (MAC UWB-IR and RF front-end) transmission validated from
 - **30** cm singe patch antenna without PA
 - up to 10 m array antenna and PA (designed by IMS Bordeaux)

Antenna

Antenna on flexible substrate

Patch @ 60GHz

Fréquence (GHz)

Cross-dipole slot antenna

В

S

EM Energy Harvesting

 Objective: powering (by harvesting the spill-over loss of microwave antennas) autonomous wireless sensors for structure health monitoring

Flexible substrate integration

- Objective: complete sensor communicating node integration on flexible substrate.
- 1st step : flexible substrate choice \rightarrow Kapton for RF/microwave
- Challenge : flip-chip technology for microwaves chips
- Challenge : High efficiency antenna with wide bandwide
 - Prototype : patch antenna
 - Protoype : cross-dipole slot antenna

Major advantage of flexible substrate integration : facility to deploy the WSN nodes for any application

Conclusion

• WSN for SHM as enabler for safer, greener aircrafts:

- SoC Architectures heterogeneous integration on flexible substrate integration for communicating nodes
- Impulse radio UWB emitter on ASIC developed → very low power
- 60GHz architectures on ASIC
- Measurements synchronization
- Energy harvesting
- Demo on You Tube: https://youtu.be/f1-i81rY-js

Thank you for your attention !

