

DAMAGE TOLERANT ACTIVE CONTROL: CONCEPT AND APPLICATIONS

Mechbal Nazih

Laboratoire **PIMM**, UMR-CNRS, Arts et Métiers ParisTech (ENSAM), Paris Nazih.mechbal@ensam.eu

1ERE JOURNEE NATIONALE CONTROLE SANTE ET MONITORING DES STRUCTURES 15 Mars 2018

- Mechanical, electrical, thermal, optical, dimensional properties
- Long-term properties: durability of polymers, composite, gigacycle fatigue of steel

Multidisciplinary competences

From chemistry to mechanics and **control**, from experimental to numerical simulations

Introduction and Motivation

Damage Tolerant Active Control (DTAC)

DTAC Strategies & Examples

WHY DTAC ?

Increasing the availability: intelligent maintenance

WHY DTAC ?

Vibrations ...

> are recurring problems in means of land and air transport.

Aging and fatigue ...

Vibrations

A question:

Without compromising safety, could we make our structures:

- > Better available?
- Lighter weight?
- More cost efficient?
- More reliable?
- > More sustainable ?

A response is : Smart structures ...

which is the integration of sensing and possibly also actuation devices seeking to satisfy several characteristics of a biological system as sensing, actuation, adaptability and self-repair ...

.... with SHM (Structural Health Monitoring)

which is the integration of smart devices allowing the loading and damaging conditions of a structure to be recorded, analyzed, localized and predicted in a way that non-destructive testing becomes an integral part of the structure ...

... and Active Control capabilities

Image with the second secon

Damage Tolerant Active Control (Contrôle Actif Tolérant aux Dommages)

DTAC

Damage Tolerant Active Control – DTAC

- A new paradigm that we have proposed (Mechbal and Nobrega, 2012) to design fault tolerant controllers, specifically dedicated to face structural damages.
- DTAC makes use of a widely multidisciplinary context, which applies knowledge from different fields, such as mechanical structures modeling, signal processing, control theory, fracture mechanics, modal analysis and artificial intelligence, ...

Four principal topics:

- 1. SHM
- 2. Active Control
- 3. Damage Monitoring
- 4. Structural Tolerant Control

DTAC architectures:

- > DTAC combines the functions of SHM and active control.
- DTAC encompasses two main fields: damage monitoring and damage tolerant control

DTAC - NUMERICAL SIMULATION

Numerical Simulations

Smart Structures with PZT

SDT software

Damage acts as a source in healthy-damaged signal

DTAC TOPICS - SHM

DTAC TOPICS - SHM

SHM methods

~ Passive Methods~

Use a large number of sensors Ambient or damaging impacts excitations <u>Example</u>: acoustic emission in a loaded structure, output only vibration based approaches

SHM sequential levels

Measurements Vo Detection Localisation Level - 2 Estimation Level - 3 (Rytter, 1993) Prediction Level - 4

~ Active Methods~

Possibility to use actuators Controlled excitations <u>Example</u>: acoustic emission emitters and detectors – Lamb waves, ...

FOCUS: BAYESIAN FRAMEWORK FOR SHM

Lamb waves-based damage localization :

Time of flight (Tof) based principle:

- Ellipse method: time of arrival (ToA) :
- Hyperbola method: time difference of arrival (TDoAs)
 Hyperbole PZT(4; 2,3)
 Damage location
 Actuator PZT4

Sensor PZT3

Capteur

ctior

Position du dommage

Capteu

FOCUS: BAYESIAN FRAMEWORK FOR SHM

Lamb waves-based damage localization :

- Time of flight (Tof) based principle:
 - Ellipse method: time of arrival (ToA) :

 $\boldsymbol{\theta} = [x_d, y_d, V_a(f,$

UNCERTAINTIES

Approach: Bayesian estimation

Bayesian formulation of the Tof:

$$Tof_m = Tof_c(\boldsymbol{\theta}) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) = \frac{1}{\sigma_{\varepsilon}\sqrt{2\pi}} \exp\left(\frac{(Tof_m - Tof_c(\boldsymbol{\theta}))^2}{2\sigma_{\varepsilon}^2}\right)$$

Damage
position
$$(x_d, y_d)$$

 α_a , $V_g(f, \alpha_s)$]
 $\downarrow_{(y_0)}^{(f, \alpha_s)}$
 $\chi_{(y_0)}^{(f, \alpha_s)}$

DTAC TOPICS - DAMAGE MONITORING

DTAC TOPICS - ACTIVE CONTROL

- Minimize mechanical vibrations of structures preventing from prejudicial damage provoked by excessive strain or by fatigue.
- Control techniques: *feedback* and *feedforward*
 - > Modal control avoiding spillover phenomena (Balas, 1978; Inman, 2006)
 - Conventional PID control (Sutton et al., 1999)
 - > LQR (Petersen & Pota, 2003) and H_2/H_{∞} (Anthonis et al., 1999),
 - > Distributed controller (Bhattacharya et al., 2002);
 - > Model predictive controller (Wills et al., 2008),
 - > Nonlinear controller (Gaudiller et al., 2007);
 - > Modal: H_{∞} controller (Genari et al., 2014, 2017)
 - > A Hybrid controller : H_{∞} controller and an adaptive controller (*Vergé et al., 2001*)
 - > Modal H_{∞} controller (Genari et al., 2014, 2017)

Focus : Robust H_{∞} Approach

Robust approaches to disturbance rejection:

Robust H_{∞} approach

DTAC TOPICS - DAMAGE MONITORING

DTAC TOPICS - DAMAGE MONITORING

Damage monitoring

- > Monitoring of <u>already</u> detected and localized damage.
- > The goal is to **supervise the evolving** of the damage and to provide **prognosis** about its in-service lifetime.
- It is mainly based on methods described in the SHM area as for example, Lamb wave based approaches and mechanical/materials analysis.
- Need to use models based on fracture mechanics, fatigue life analysis, or structural design assessment.
- It's a <u>transversal area</u>:
 - book on prognosis in SHM (Inman et al., 2005)
 - book on durability and aging of structures (Pochiraju et al., 2012).

✓ Durability of smart structures

- ✓ Aging Monitoring with PZT
- kinetics of damages.

DTAC TOPICS - STC

DTAC TOPICS - STC

Structural tolerant control (STC)

- > Deals with the vibration suppression control problem against potential damage.
- Provides satisfactory performances in terms of vibration rejection under the possible presence of damages
- > Simultaneously achieve high performance and structural durability.
- > Approaches: robust control and reconfigurable control (similar to FTC).
- > STC could also be used to monitor or to detain the evolving of damage
- However, this subject has seldom been discussed and in the literature, <u>only few works</u> are referred to it (sometimes unwittingly):
 - The first addressed STC problem: Ahmad et al. (2000) μ synthesis and H_{∞} controllers
 - Caplin et al. (2001): simultaneously achieve high performance and structural durability.
 - More recently, a damage tolerant LQG modal controller has been applied to a printed circuit board (PCB) with PZT by (Chomette et al., 2008, 2010).

DTAC strategies:

> Depending on the objectives and how "smart" is the structure (number, position and type of sensors and actuators), we proposed different ways to perform DTAC:

- 1. Strictly Tolerant Active Controller STAC
- 2. Preventive Active Controller PAC
- 3. Evolving Active Controller EAC
- 4. Adaptive Tolerant Active Control ATAC

Strictly Tolerant Active Controller (STAC)

- Fixed and robust enough to guarantee a minimal acceptable performance to some future damage level.
- The compromise between robustness and performance may conduct to a poor controller behavior for a not damaged structure

Preventive Active Controller (PAC)

- > Avoid or delay the occurrence of damages
- > This is the aim of *several recent works*. (Chomette et al., 2010).

Evolving Active Controller (EAC)

- **Protect** the structure avoiding the evolution of the damage.
- Achieve vibration reduction and perform damage prognosis

Adaptive Tolerant Active Control (ATAC)

- > Accommodate a detected damage.
- Include an SHM module
- Different system configurations are possible:

Adaptive Tolerant Active Control (ATAC)

- Accommodate a detected damage.
- Include an SHM module
- Different system configurations are possible:

DTAC – ISSUES AND PROBLEMS

The goals:

- To control the vibration in predefined regions of the structure,
- To perform self diagnosis and to accommodate for damages
- To adapt automatically the control spatially when a damage occurs
- To pay attention to the number of active elements

Problems:

- The spatial dimension
 - \rightarrow what's about vibration reduction over the entire structure ?
- \succ The curse of dimensionality ! \rightarrow Model reduction problems
- > The interaction between the **SHM** and the control systems is not straightforward
 - → Stability issues
- It's a Singular Perturbation control problem two dynamics !
- Numerical simulations and experimentations

DTAC – APPROACHES

To deal with such problems:

- Robust control
- Adaptive control
- Distributed and decentralized approach
- FTC methods

Two approaches:

> Adaptive Modal H_{∞} control & Subspace metric for damage monitoring (Genari, et al., 2015, 2017)

> Spatial H_2/H_{∞} control (Mechbal and Nobrega, 2014, 2015)

• Modal H_{∞} Control Problem

According to the optimal controller design framework, a performance indicator is introduced as an output vector z(t), leading to the following state-space equations:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}_{1}\mathbf{w}(t) + \mathbf{B}_{2}\mathbf{u}(t)$$

$$\mathbf{z}(t) = \mathbf{C}_{1}\mathbf{x}(t) + \mathbf{D}_{11}\mathbf{w}(t) + \mathbf{D}_{12}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}_{2}\mathbf{x}(t) + \mathbf{D}_{21}\mathbf{w}(t) + \mathbf{D}_{22}\mathbf{u}(t),$$
(4)

in which the matrices C_1 , D_{11} , and D_{12} are chosen to define the desired performance vector.

The H_∞ control problem is to find a controller K_c to the plant given by Eq. (4), if there is one, stated as:

$$\dot{\mathbf{x}}_{c}(t) = \mathbf{A}_{c}\mathbf{x}_{c}(t) + \mathbf{B}_{c}\mathbf{y}(t)$$
$$\mathbf{u}(t) = \mathbf{C}_{c}\mathbf{x}_{c}(t) + \mathbf{D}_{c}\mathbf{y}(t),$$
(5)

such that, for the closed-loop system and given a $\gamma > 0$,

$$\underbrace{\inf_{\mathbf{K}_{\mathbf{c}}\in V}}_{\mathbf{W}\neq\mathbf{0},\,\mathbf{W}\in\mathcal{L}_{2[0,\,\infty)}}\frac{\int_{\mathbf{0}}^{\infty}\mathbf{z}^{T}(t)\mathbf{z}(t)dt}{\int_{\mathbf{0}}^{\infty}\mathbf{w}^{T}(t)\mathbf{w}(t)dt} < \gamma^{2},$$

in which V represents the set of all controllers that stabilises the plant.

• Modal H_{∞} Control problem

Theorem (Modal H_{∞} theorem)

Consider the H_{∞} problem of designing a controller K_c given in Eq. (5) for a structure according to Eq. (4) with the modal state matrix according to Eq. (2) and the following performance output:

$$\mathbf{z}_{\mathbf{p}}(t) = \mathbf{\Gamma}\mathbf{x}(t) + \mathbf{\Theta}\mathbf{w}(t) + \mathbf{\Lambda}\mathbf{u}(t), \tag{6}$$

with

$$\begin{split} & \Gamma = \left[\begin{array}{ccc} \mathbf{Q}_{1}^{\frac{1}{2}} \mathbf{C}_{1_{1}} & \mathbf{Q}_{2}^{\frac{1}{2}} \mathbf{C}_{1_{2}} & \cdots & \mathbf{Q}_{m}^{\frac{1}{2}} \mathbf{C}_{1_{m}} \end{array} \right], \Theta = (\mathbf{Q}_{1}^{\frac{1}{2}} \mathbf{D}_{11_{1}} + \cdots + \mathbf{Q}_{m}^{\frac{1}{2}} \mathbf{D}_{11_{m}}), \\ & \Lambda = (\mathbf{Q}_{1}^{\frac{1}{2}} \mathbf{D}_{12_{1}} + \cdots + \mathbf{Q}_{m}^{\frac{1}{2}} \mathbf{D}_{12_{m}}), \end{split}$$

where the diagonal matrix $\mathbf{Q}_i > 0$ weights mode *i* and $\mathbf{C}_{\mathbf{1}_i}$, $\mathbf{D}_{\mathbf{1}\mathbf{1}_i}$, and $\mathbf{D}_{\mathbf{1}\mathbf{2}_i}$ correspond to the respective mode *i* submatrices in \mathbf{C}_1 , $\mathbf{D}_{\mathbf{1}\mathbf{1}}$, and $\mathbf{D}_{\mathbf{1}\mathbf{2}}$. Then, given a scalar $\gamma > 0$, a controller that solves the respective H_{∞} problem:

$$\|\mathsf{T}_{\mathsf{Z}_{\mathsf{p}}\mathsf{W}}(s)\|_{\infty} < \gamma_{s}$$

also guarantees that:

$$\|\mathsf{T}_{\mathsf{ZW}}(s)\|_{\infty,\mathbf{Q}} < \gamma,$$

where $T_{z_pw}(s)$ and $T_{zw}(s)$ are the closed-loop transfer matrices using K_c for the modal performance vectors.

Experiment results

Objectives:

- Test the methodology for the regular active vibration control;
- Test the methodology for DTAC using the STAC strategy;

Experiment results

- Application of the controller for the healthy and damaged structure;
- Frequency response comparison between the healthy and the damaged structures:

Experiment results

- Application of the controller for the healthy and damaged structure;
- The weighing increase leads to vibration reduction for the healthy and the damaged structures;

Modal Double-Loop Framework

Reconfiguration mechanism

Theorem

The state-tracking error dynamics given in Eq. (10) are stable for the following adaptive gain laws:

$$\dot{\hat{\mathbf{K}}}_{\mathbf{X}}(t) = -\mathbf{T}_{\mathbf{X}}\hat{\mathbf{X}}(t)\mathbf{e}_{\mathbf{X}}^{\mathsf{T}}(t)\mathbf{P}\mathbf{B}_{\mathbf{2}},\tag{12}$$

$$\dot{\mathbf{K}}_{\mathbf{u}_{1}}(t) = -\mathbf{T}_{\mathbf{u}_{1}}\mathbf{u}_{1}(t)\mathbf{e}_{\mathbf{X}}^{T}(t)\mathbf{P}\mathbf{B}_{2},$$
(13)

in which for $\mathbf{R} = \mathbf{R}^T > 0$, $\mathbf{P} = \mathbf{P}^T > 0$ satisfies the following algebraic Lyapunov equation:

$$\mathbf{P}\mathbf{A}_{\mathbf{r}} + \mathbf{A}_{\mathbf{r}}^{\mathsf{T}}\mathbf{P} = -\mathbf{R}.$$
 (14)

Moreover, $T_X > 0$ and $T_{u_1} > 0$ are diagonal matrices that determine adaptation rates. Matrix T_X is a function of the modal adaptation-rate submatrices:

$$\mathbf{T}_{\mathbf{X}} = \begin{bmatrix} \mathbf{T}_{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{T}_{2} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{m} \end{bmatrix},$$
(15)

where the 2 \times 2 matrix **T**_{*i*} determines the adaptation rate of mode *i*.

FE Simulations:

- Damage 2: *h* = 15 mm;
- Damage 3: *h* = 20 mm.

 The chirp signal of the previous examples is used as disturbance, considering three cycles of 12 repetitions;

 For each cycle, there is one condition of the structure: healthy or damage 2, or damage 3;

Results: Healthy structure

Results: Damage Controller

Focus: A Spatial H_{∞} **Control Approach**

Input Disturbances

Control signal

w(t)

u(t)

Performance index

Measured outputs

the

y(t)

Smart Structure

Active

Controller

H_{∞} controller

> Time dependence formulation:

$$\dot{x}_p(t) = A_p x_p(t) + B_w w(t) + B_u u(t)$$

$$z(t) = C_z x_p(t) + D_{zw} w(t) + D_{zu} u(t)$$

$$y(t) = C_y x_p(t) + D_{yw} w(t)$$

$$u(t) = C_k x_k(t) + D_k y(t)$$

$$\int \text{Criterion}$$

$$\sup_{w \in L_{2[0,\infty)}} J_{\infty} < \gamma^2$$

$$\|G(s)\|_{\infty} = \sup_{\omega} \sigma_{max}(G(j\omega))$$

$$J_{\infty} = \frac{\|z(t)\|_2^2}{\|w(t)\|_2^2} = \frac{\int_0^\infty z(t)^T z(t) dt}{\int_0^\infty w(t)^T w(t) dt}$$
Problem: How to conveniently incorporate the spatial information of the of structure ?

spatial

Focus: A Spatial H_{∞} Control Approach

• H_{∞} controller

> Time dependence formulation:

$$\begin{cases} x_{p}(t) = A_{p}x_{p}(t) + B_{w}w(t) + B_{u}u(t) \\ z(t,r) = C_{z}(r)x_{p}(t) + D_{zw}(r)w(t) + D_{zu}(r)u(t) \\ y(t) = C_{y}x_{p}(t) + D_{yw}w(t) \\ u(t) \\ \end{cases}$$
Controller K,

$$\dot{x}_{k}(t) = A_{k}x_{k}(t) + B_{k}y(t) \\ u(t) = C_{k}x_{k}(t) + D_{k}y(t) \\ \end{cases}$$
Criterion

$$\underbrace{\sup_{w \in L_{2}[0,\infty)} J_{\infty} < \gamma^{2}}_{w \in L_{2}[0,\infty)} \\ \|G(s)\|_{\infty} = \sup_{\omega}\sigma_{max}(G(j\omega)) \qquad J_{\infty} = \frac{\|z(t)\|_{2}^{2}}{\|w(t)\|_{2}^{2}} = \int_{0}^{\infty} z(t)^{T} z(t)dt \\ information of the of structure ? \end{cases}$$
Problem: How to conveniently incorporate the spatial information of the of structure ? (1)

Focus: A Spatial H_{∞} Control Approach

• Spatial H_{∞} controller:

Vse spatial norms:

$$\ll G(s,r) \gg_{\infty}^{2} = \sup \lambda_{max} (\int_{\Omega} G^{*}(jw,r)G(jw,r)dr)$$

which guarantees average reduction of vibration throughout the entire structure

For specific region Ω where we want to minimize the H_{∞} spatial norm, a space dependent weighing matrix Q(r), where r is the spatial vector, is introduced:

$$J_{\infty} = \frac{\int_{0}^{\infty} \int_{\Omega} z(t,r)^{T} \boldsymbol{Q}(\boldsymbol{r}) z(t,r) dr dt}{\int_{0}^{\infty} w(t)^{T} w(t) dt}$$

> New performance index output vector with space dependence is driven:

$$z(t, \mathbf{r}) = C_z(\mathbf{r})x_p(t) + D_{zw}(\mathbf{r})w(t) + D_{zu}(\mathbf{r})u(t)$$

DTAC – AN EXAMPLE

* An example: Cantilevered active composite structure

Plate like-beam: 4 epoxy/carbon layers with orientation $[0^{\circ}/-45^{\circ}/+45^{\circ}/0^{\circ}]$.

MFC patch from SMART-MATERIALS

DTAC – AN EXAMPLE

- An example: Cantilevered active composite structure
 - > Robust controller
 - Reconfigurable controller
 - Evolving controller

DTAC: A SPATIAL H_{∞} **CONTROL APPROACH**

Frequency (rad/s)

The spatial H_{∞} control of the healthy structure

x-location (mm)

0 0

Frequency (rad/s)

* Robust controller: Small damage (Barely Visible Impact Damage - BVID)

Robust controller - small damage (BVID)

- Reconfigurable controller Severe damage
 - > **Damage localization** approach: Lamb waves-based damage localization

*** Reconfigurable controller – Severe damage**

Evolving controller – Crack damage

Evolving controller – Spatial weighting functions

***** Evolving controller – Spatial weighting functions

CONCLUSION

- A new paradigm to design fault tolerant controllers, specifically dedicated to face structural damages, was here examined, and called damage tolerant active control, or DTAC.
- Calls for FTC, SHM and active control of vibrations considering their interfaces with the introduced area of DTAC.
- Several techniques used in these areas are possible to be used to DTAC purpose, and main objectives and architectures to be adopted were discussed.
- On going works: theoretical investigation and experimental applications of the concepts and controller configurations are expected to be thoroughly studied to confirm the raised expectations
- New improvements: *fatigue and stress mitigation controllers*

DTAC NEW CONCEPT ?

FIN